Turing Pattern Formation without Diffusion

نویسنده

  • Shigeru Kondo
چکیده

The reaction-diffusion mechanism, presented by AM Turing more than 60 years ago, is currently the most popular theoretical model explaining the biological pattern formation including the skin pattern. This theory suggested an unexpected possibility that the skin pattern is a kind of stationary wave (Turing pattern or reaction-diffusion pattern) made by the combination of reaction and diffusion. At first, biologists were quite skeptical to this unusual idea. However, the accumulated simulation studies have proved that this mechanism can not only produce various 2D skin patterns very similar to the real ones, but also predict dynamic pattern change of skin pattern on the growing fish. Now the Turing's theory is accepted as a hopeful hypothesis, and experimental verification of it is awaited. Using the pigmentation pattern of zebrafish as the experimental system, our group in Osaka University has been studying the molecular basis of Turing pattern formation. We have identified the genes related to the pigmentation, and visualized the interactions among the pigment cells. With these experimental data, it is possible to answer the crucial question, " How is the Turing pattern formed in the real organism? " The pigmentation pattern of zebrafish is mainly made by the mutual interactions between the two types of pigment cells, melanophores and xanthophores. All of the interactions are transferred at the tip of the dendrites of pigment cells. In spite of the expectation of many theoretical biologists, there is no diffusion of the chemicals involved. However, we also found that the lengths of the dendrites are different among the interactions, which makes it possible to generate the conditions of Turing pattern formation, " local positive feedback and long range negative feedback ". Therefore, we think it is appropriate to call the identified mechanism as a Turing mechanism although it does not contain any diffusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing pattern formation with fractional diffusion and fractional reactions

We have investigated Turing pattern formation through linear stability analysis and numerical simulations in a two-species reaction–diffusion system in which a fractional order temporal derivative operates on both species, and on both the diffusion term and the reaction term. The order of the fractional derivative affects the time onset of patterning in this model system but it does not affect ...

متن کامل

Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems

We study the effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems. For this purpose, the GiererMeinhardt model of pattern formation is considered. The cases we study are: (i)randomness in the underlying lattice structure, (ii)the case in which there is a probablity p that at a lattice site both reaction and diffusion occur, otherwise there is only diffusion and l...

متن کامل

Patterns in reaction diffusion system

Reaction-Diffusion systems are important in the field of non-equilibrium phenomena with relevance to biological and synthetic pattern formation. While homogenous distribution of chemicals was always believed to be a stable state, the symmetry-breaking treatment by Turing on such systems in 1951 showed pattern formation could be more stable in certain cases. This paper reviews the treatment by T...

متن کامل

Evolutionary Pattern Formation

The problem of explaining the rich spectrum of different patterns exhibited by mammals has a long history. In a controversial paper (1952) Turing proposed a Reaction-Diffusion (RD) model to explain at a macroscopic scale the process of pattern formation, as related to the occurrence of what he called a diffusion-driven instability. A typical Turing system consists of at least two chemical speci...

متن کامل

Pattern formation in spatially heterogeneous Turing reaction–diffusion models

The Turing reaction–diffusion model [Phil. Trans. R. Soc. 237 (1952) 37–72] for self-organised spatial pattern formation has been the subject of a great deal of study for the case of spatially homogeneous parameters. The case of parameters which vary spatially has received less attention. Here, we show that a simple step function heterogeneity in a kinetic parameter can lead to spatial pattern ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012